
Quake 3 Reciprocal Square Root: The Fun Parts
Jerome Coonen

16 April 2022

One liner

Given , compute with an ingenious first guess for and then one step of classic Newton’s Iteration to𝑥 𝑦 = 1
𝑥

𝑦

improve it. This short code in the video game Quake 3 has gained cult fame over the past 20 years. Line for line, it

may be the most discussed code in history.

A quick preview

Here is the code, adapted from the Wikipedia page Fast Inverse Square Root.

float Q_sqrt(float x) {
long i;
float y;

(1) i = * (long *) &x; // evil floating point bit-level hacking
(2) i = 0x5f3759df - (i >> 1); // WTF?
(3) y = * (float *) &i;
(4) y = y * (1.5F - (0.5F * x * y * y)); // 1st iteration

// y = y * (1.5F - (0.5F * x * y * y)); skip 2nd iteration
}

You don’t have to be a C expert to see something fishy here in lines (1) and (3). The variables x and y are 32-bit

floating point numbers in IEEE Standard 754 format, and i is a 32-bit integer. The “F” suffix on the decimal

constants indicates they should be 32-bit floating point values, too.

Line (1) says, “just put the bits of x into i, I know what I’m doing.” The pejorative comment exposes this as

potentially dangerous behavior. Line (2) is the marvelous first guess of the inverse square root via subtraction and

a 1-bit shift, with a mysterious hex constant thrown in. Line (2) is the primary subject of this note.

Then line (3) simply puts the bits of i back into y, where they regain their IEEE Standard interpretation. Lines (1)

and (3) don’t compute anything. They permit 32-bit values to pass between integer and floating point contexts.

Finally, line (4) improves the accuracy of y with an everyday numerical technique. Normally, one performs two or

more Newton steps, but the designers commented out the second step when they determined that one step

delivered sufficient accuracy for Quake3.

The Wikipedia page above is an excellent resource, featuring a mix of Quake3 history, background on the

importance of the reciprocal square root, and further references.

© 2022 Jerome Coonen 1

The trick

The trick behind line (2) is easy to state but less easy to see: compute the first guess of y in the parallel universe of

base-2 logarithms. The formula

𝑙𝑜𝑔2(𝑦) = 𝑙𝑜𝑔2(1 / 𝑥) = − 1
2 𝑙𝑜𝑔2(𝑥)

illustrates how straightforward the reciprocal root is in the log world – change sign and divide by 2. The question

becomes how we can pass quickly between for any x. How do we enter the parallel universe?𝑥 ↔ 𝑙𝑜𝑔2(𝑥)

A logarithm hiding right inside

A positive normal number in IEEE 32-bit format has the form𝑧

shown, with . Ignoring for a moment, take the log:𝑥 = 2𝑝 × 1. 𝑓 𝐵

.𝑙𝑜𝑔2(𝑥) = 𝑙𝑜𝑔2 2𝑝 × 1. 𝑓() = 𝑝 + 𝑙𝑜𝑔2(1 + 𝑓)

Convert to the natural log with a bit more high school algebra:

.𝑙𝑜𝑔2(𝑥) = 𝑝 + 𝑙𝑜𝑔2(𝑒)𝑙𝑜𝑔(1 + 𝑓)

is about 1.44. It’s the log base 2 of the base of the natural logarithms. The Taylor Series𝑙𝑜𝑔2(𝑒) 𝑒 = 2. 71828...
expansion of the natural log is helpful, too. Note how the in the vanishes, using this approximation.1 1. 𝑓

for small .𝑙𝑜𝑔(1 + 𝑓) = 𝑓 − 𝑓2/2 + 𝑓3/3 − ... ≈ 𝑓 𝑓

All this work brings us to

𝑙𝑜𝑔2(𝑥) ≈ 𝑝 + 1. 44 × 𝑓 ≈ 𝑝 + 𝑓 .

This is a rough approximation! We casually tossed the factor 1.44, but we’ll revisit that matter later. The beauty is

that the expression is just , namely, the bits of the 32-bit field with B removed and a binary point𝑝 + 𝑓 𝑝. 𝑓
insinuated between the p and f fields. The approximation is sitting right there!

This is totally unintuitive. It’s why people write code comments like, “evil floating point bit-level hacking.”

A little bit-level hacking to remove B

The algebra of the last section offered a different interpretation of the bits of a 32-bit floating point number. Here’s

how to pass through the portal into the parallel universe.

The number B is a bias added to the signed exponent to bring it into

the nonnegative range 0x00 to 0xff. The bias is 127, or hex 0x7f.

We can now compute an approximate by simply subtracting𝑙𝑜𝑔2(𝑥)
B, aligned 23 bits leftward. In code this could look like

© 2022 Jerome Coonen 2

i = * (long *) x;
i = i - 0x3f800000; // namely 0x7f << 23

The result is approximate as a signed 32-bit fixed-point binary value. A great deal of conversation led to𝑙𝑜𝑔2(𝑥)
this one 32-bit subtraction.

An example at the speed of light

Let’s try our log skills with the speed of light. . Its 32-bit floating point value is 4d8f0d18𝑐 𝑐 ≈ 3 × 108 𝑚/𝑠
which is printed by this bit of code.

float c = 3.0e8;
printf("c = %.1e = 0x%08x\n", c, *(long *) &c);

The exponent bits are 4d800000 so we right shift by 23 bits to 9b, which we convert to 155 decimal, subtract the

bias 127, and arrive at 28. The bits of the fraction f are 8f0d18, with the binary point just right of the leading bit.

This is not obvious the first twenty times you see it, and we’re not making a fuss about the implicit leading bit, but

shifting the significant bits left one bit gives us the convenient form . In the second previous𝑐 ≈ 228 × 1. 1𝑒1𝑎3
16

section, we saw that lurking within is . The true value is𝑙𝑜𝑔2(𝑐) ≈ 1𝑐. 1𝑒1𝑎3
16

= 28. 1176

so we have a ballpark estimate.𝑙𝑜𝑔2(𝑐) = 1𝑐. 290𝑓2...
16

= 28. 1603...

As a sanity check, we could restore the factor to the fraction part to improve the approximation.𝑙𝑜𝑔2(𝑒) = 1. 44
Th result is a more credible . Below we’ll find an even better way to improve the first𝑙𝑜𝑔2(𝑐) ≈ 28. 1693 𝑙𝑜𝑔2()

approximation.

Approximating the reciprocal root

The next step is to approximate . This line of code shifts the log right one bit and𝑙𝑜𝑔2(𝑦) = − 1
2 𝑙𝑜𝑔2(𝑥)

negates it. The binary shift effects the division by 2.

i = -((i - 0x3f800000) >> 1);

This is the first hint of line (2) in the Quake3 code.

To retrieve the floating point value from we run the process backward – add the bias back in! The𝑦 𝑙𝑜𝑔2(𝑦)
following blend of C programming and mathematical rearrangement simplifies the formula.

i = 0x3f800000 -((i - 0x3f800000) >> 1); // add the bias to “make” it floating
= 0x3f800000 + (0x3f800000 >> 1) -(i >> 1); // gather the hex constants
= 0x5f400000 - (i >> 1);

By just thinking about the bits of x in a different way, we’ve gotten very close to the initial approximation in line (2)

of the Quake3 code. Now it’s time to improve the guess.

© 2022 Jerome Coonen 3

A better log2()

The exaggerated graph to the right shows how . It suggests an improvement:𝑏 = 𝑙𝑜𝑔2(1 + 𝑎) ≈ 𝑎

where reduces the𝑙𝑜𝑔2(𝑥) = 𝑙𝑜𝑔2 2𝑝 × 1. 𝑓() ≈ 𝑒 + 𝑓 + σ σ
maximum deviation from . The best value is .𝑏 = 𝑙𝑜𝑔2(𝑎) σ = 0. 04304
An improved approximate can be had by adding a small nudge. The𝑙𝑜𝑔2()
value of is the maximum ofσ

𝑓(𝑧) = 𝑙𝑜2(1 + 𝑧) − 𝑧 𝑧 ∈ 0, 1[]
a simple calculus exercise.

The Quake3 designers did something less obvious. They improved byσ
looking at it in the larger context of how it behaved through two steps of

Newton’s method.

Newton’s method

Isaac Newton’s name is attached to a powerful technique that emerged in several parts of the world in the 17th

century. The method finds points where a function is zero, so we recast our inverse square root problem in this

form .𝑓(𝑦) = 1/𝑦2 − 𝑥 = 0

The Newton iteration improves a guess with the formula

𝑦
2
 = 𝑦

1
−

𝑓(𝑦
1
)

𝑓'(𝑦
1
)

where so𝑓'(𝑦) =− 2𝑦−3

𝑦
2
 = 𝑦

1
−

𝑦
1
−2−𝑥

−2𝑦
1
−3 = 𝑦

1
3
2 − 1

2 𝑥𝑦
1
2()

This is line (4) of the Quake3 code Nothing fancy, just a line of numerics:

(4) y = y * (1.5F - (0.5F * x * y * y)); // 1st iteration

The Quake3 root

The final step of this saga is to refine the initial approximation in line (2):

float ALMOST_Q_sqrt(float x) {
long i;
float y;

(1) i = * (long *) &x; // evil floating point bit-level hacking
(2) i = 0x5f400000 - (i >> 1); // there must be a better constant
(3) y = * (float *) &i;

© 2022 Jerome Coonen 4

(4) y = y * (1.5F - (0.5F * x * y * y)); // 1st iteration
// y = y * (1.5F - (0.5F * x * y * y)); skip 2nd iteration

}

For lack of a better term, let’s call the value in line (2) the magic constant. Improving the approximation𝑙𝑜𝑔2()
helps, but what the Quake3 designers did was find the magic constant by looking at the behavior of Q_sqrt()
over a range of inputs. Some of the references discuss tools like Matlab, which provide built-in methods to

automate such searching.

We went DIY, investigating Q_sqrt() over the range [0.001, 6.0] with a grid of 4,001 pints. In 13 steps,

using binary search, we arrived at 0x5f3759ef, which differs from the Quake3 value in the 5th bit position from

the right.

This magic constant is peculiar to the circumstance of using two steps of the Newton iteration. But after arriving at

their magic constant, the Quake3 designers backed off to using just one step of Newton, commenting out the

second line. The magic constant for that situation differs 4 bits farther leff of the published value, but it’s still very

close.

Bit-level hacking not considered evil

Programmers know that the expressive, low-level features of the C language offer unlimited opportunity to get

their bits in a knot. Style guides preach simplicity and transparency. Perceived “optimizations” are so often

irrelevant – after the bugs get wrung out. Then along comes the reciprocal square root, a vital function at the

heart of a game’s rendering engine. Every cycle counts, so it’s worth looking up a decades-old connection between

logarithms and binary floating point encodings. The result was a 4-line code sequence with a bit-level hack talked

about for twenty years.

Some ancient history

The guess-and-iterate algorithm here dates back at least to reciproot on the Ferranti-Manchester Mk 1 computer.

Wikipedia and other articles trace the origin of the Quake 3 algorithm to Cleve Moler and colleagues, who point to

notes by William Kahan, emeritus professor of everything computational at U.C. Berkeley.

Kahan saw the algorithm on the Mk 1 in 1953 and he suggests it might date to 1949. He implemented it on the

IBM 7090 at University of Toronto in 1962 and on the CDC 6400 at Berkeley in 1969. It migrated back to the

PDP-10 at MIT, where it was known as Kahan’s Magic Square Root. Kahan’s square root papers of 1980 and 1999

discuss his improved initial guess, which fed into the Quake 3 code.

© 2022 Jerome Coonen 5

