
Adam Hyland (adampunk.com)

What’s in a number? Following the Fast Inverse Square
Root and its “magic” constant

“0x5F3759DF” — Stable Diffusion

http://adampunk.com

I will not be explaining the code

Various explanations available at 0x5f37642f.com

My favorite is Jerome Coonen’s

http://0x5f37642f.com/
https://adampunk.com/documents/FISR/CoonenFunParts.pdf

Roadmap

IEEE-754
Corrupted Stable Diffusion

The problem space

Where I come in

Why this is interesting

Tangent to the surface

Normal
to the surface

Origin

Reflection off a surface*

{
Euclidian
Distance

Euclidian distance = sqrt (a2 + b2)

sin(𝜽) = b / sqrt (a2 + b2)
𝜽

a

b

* This example is two
dimensional where the “normal”
to the plane is just (0, 1)

Not Just Lighting

Computation of distance metrics and surface
normals is ubiquitous in many arenas:

• Statistics
• Signal processing
• Robotics
• Simulation
• Etc.

Wikimedia Commons contributors, "File:Normal vectors on a curved surface.svg,"
Wikimedia Commons, the free media repository, (accessed November 6, 2022).

https://commons.wikimedia.org/w/index.php?title=File:Normal_vectors_on_a_curved_surface.svg&oldid=642001136

In a software library in 1951*

Cecily Popplewell wrote one of the first software libraries
on the Manchester Mark I. Ten functions were named in
operating manual.
•“half were for input/output and half were mathematical
functions.” (Campbell-Kelly 1980 p. 145)

•The RECIPROOT routine was one of the five
mathematical functions.

A similar routine was written in one of the earliest floating
-point schemes, FLOATCODE, for the next version of the
Mark I Reciproot routine for the Manchester Mark I, September 1951

* The same year Grace Hopper and her team developed the first compiler

Square Root is difficult to do in hardware

Peter Soderquist and Miriam Leeser. 1996. Area and performance
tradeoffs in floating-point divide and square-root
implementations. ACM Comput. Surv. 28, 3 (Sept. 1996), 518–564.
https://doi.org/10.1145/243439.243481

Support for square
root limited even
deep into the
1990s

Floating-point
standard could not
require a hardware
implementation in
1985*

* National Semiconductor’s software √ implementation was supplied to help secure their support for the standard

https://doi.org/10.1145/243439.243481

Some
implementations

are suspect

Linux system sqrt

Unix integer
square root

A good approximation is useful
Square root and 1/sqrt
are in the critical path

• Speed
• Timing

Important to a wide
variety of use cases

“0x5f37642f” — Stable Diffusion

Useful things are sometimes cargo culted
In times of need

Quake II Source code, 1997

https://github.com/id-Software/Quake-2/blob/372afde46e7defc9dd2d719a1732b8ace1fa096e/game/q_shared.c#L770

Quake III source code, 1999

Enter the Fast Inverse Square Root

https://en.wikipedia.org/wiki/Fast_inverse_square_root

I said I wouldn’t explain but…

1. A transformation of the input to allow for approximate
division of the logarithm of the input by two (and back
again)

2. A constant which the above is subtracted from

3. A final step which uses an iterative algorithm to converge on
the output

All three together net a close approximation to 1 / sqrt(x)

For our purposes, the FISR has three components:

1

1
2

3

What does this approximation look like?

Dramatic accuracy
improvements

With an input scaled to

 1 < x < 4

Dramatic
improvement over a
‘naive’ constant

That’s all well and good, but…

Forest Garden
Corrupted Stable Diffusion

Litigation against Github Co-Pilot, October 17, 2022

“Floating-point arithmetic” — Stable Diffusion

Was it “from” Quake III?

https://githubcopilotlitigation.com

{

Moroz et al.(Optimal constants)
Reinforcement learning
Data preprocessing
Low-power ICs

Partial view of a citation network

Kahan-Ng
(1986)

Linus’s implementation
In Linux for Alpha (1995)

Cleve Moler &
Greg Walsh (~1986-1993)

Quake III’s
Fast Inverse Square Root

(1999) [2001]

Lomont
(2003) {

Eberly
(2002)

{

{ Kadlec 2010
Matrix impl.
Hands et al. 2011

Sussin & Wanner
(low precision floats)
FPGAs for ML
Microcontrollers

McEniry
(2007)

Hardware impl.
Stress/strain est.
Type safety tests

Interstate 76 (1997)

Paper Implementation Passage

Kahan-Ng function breakdown available on github

How can we tell they are connected?

https://gist.github.com/Protonk/f3c5bb91f228ffec4d4c5e2eb16e489d

No. Really. How do we know they are
connected?

Mark I
Reciproot

Kahan on IBM 7090
(1962)

Software √
for the Proposed

IEEE Floating-Point
Standard

(1980)

Kahan’s Magic SQRT
on PDP-10 (Post 1970)

IBM Share
~1965

Paper Implementation Passage

re-use (with or without citation), reimplementation,
inspiration, passage , …

Coonen
(1984)

Mitchell Coonen Blinn

J. N. Mitchell, "Computer Multiplication and Division
Using Binary Logarithms," in IRE Transactions on
Electronic Computers, vol. EC-11, no. 4, pp. 512-517, Aug.
1962, doi: 10.1109/TEC.1962.5219391.

J. T. COONEN, "CONTRIBUTIONS TO A PROPOSED
STANDARD FOR BINARY FLOATING-POINT
ARITHMETIC (COMPUTER ARITHMETIC). PhD Thesis,
University of California Berkeley, 1984.

J. F. Blinn, "Floating-point tricks," in IEEE Computer
Graphics and Applications, vol. 17, no. 4, pp. 80-84, July-
Aug. 1997, doi: 10.1109/38.595279.

Embedded a few different ways

1962 1984 1997

https://doi.org/10.1109/TEC.1962.5219391
https://doi.org/10.1109/38.595279

{Fast hardware multipliers
Logarithmic converters
Approximate Arithmetic Circuits

{ Neural Nets
Integer quantization
Gradient descent

Trick of the trade

Mitchell
(1962)

{ Fast HDR encoding
BRDF encoding
Low-power IC trig

Blinn
(1997)

Schraudolph
(1999)

Kahan
(1999)

{
{

{

Hecker, C. (1996). Let's get to
the floating point. Game

Developer Magazine, 19-23.
Turkowski, K. (1995). I.2 -

Computing the Inverse
Square Root. In Graphics

Gems V (Macintosh Version)
(pp. 16-21) VAX float implementation,

1997

KarmaFX Floating-point
Tricks, 2003

Lee, K. H. (1973). Survey of
floating-point software

arithmetics and basic library
mathematical functions,

University of Glasgow PhD
Thesis

ADA implementation, 2001

2000 Floating-point radix sort

FDLIBM C math library, 1993

Implementation by Matthew
Jones, 2000

Community implementation
on Paul Hsiegh’s page, 2001

The space gets busy

Warren, Henry S. Hacker's
delight. Second Edition.

Pearson Education, 2013.

Just what is being shared?
A half-dozen diagrams ago I mentioned that
the FISR has essentially three components:

❖ Logarithmic transformation (c.f. Mitchell,
Coonen)

❖ Exact constant to minimize error when
restoring exponent (Kahan 1999, Moler &
Walsh, etc.)

❖ Newton-Raphson iteration (ubiquitous in
numerical computation)

abline(v = 2^seq(-4, 1, by = 1)), Corrupted Stable Diffusion

Space gets busy in the 1990s specifically
❖ This might be an artifact of what is saved or what I can follow, but…

❖ 1990s sees huge boom in:

❖ Consumer microprocessors

❖ Programming environments to explore memory tricks

❖ Applications where digit accuracy is not necessary (e.g. video games)

❖ By 2002 there are about a dozen known implementations which do not stem
from Quake III, Mitchell’s paper, or Blinn’s article

How to track

❖ The constant itself,
0x5F3759DF, is a good
start
❖ Identifies single-precision

version which likely stem from
the Moler/Walsh collab.

❖ Not shared among related works

❖ But: won’t identify
works by influence.

What now?

❖ The concept of a logarithm inherent in
floating-point representation is
simultaneously magic and mundane.

❖ Patterns of citations for the FISR are very
curious.

❖ Can we find *where* people learn a “trick of
the trade”?

Floating-point computation, Corrupted Stable Diffusion

Thank you!

Follow 0x5f37642f.com* for more developments

* SEO is dead, long live being impossible to Google

http://0x5f37642f.com/

