W % 0ASAIASOD A L S thble\Diffdsion

Adam Hyland (adampunk.com)

Following the Fast Inverse Square

C ; at’ S ln a numb €r? Root and its “magic” constant

http://adampunk.com

| will not be explaining the code

Various explanations available at 0x5£37642f.com

Quake 3 Reciprocal Square Root: The Fun Parts

Jerome Coonen
16 April 2022

My favorite is Jerome Coonen’s

http://0x5f37642f.com/
https://adampunk.com/documents/FISR/CoonenFunParts.pdf

Roadmap

The problem space
Where I come in

Why this is interestin

e
¢ L8

el T AL A
J0oel
v

et
i

J 3

e
T
t

)4

'_‘.J

P RE e ry

N VTt

s A
“*a

. --
"y
. -~

P
- ——y

"lo-‘o-o‘
-
-

—— -y
.
.
7

P

-

i

-
»
‘e

i .

» D - .- MV

---~---lo""~—‘lx"'vv-.<:
. - v e e,

L
.
-
-
-
.
»
-
-
LS

‘e >
shh e * s A%
s alA
o.l'
a ‘
i >
st wad A e asee f | e
RIS I Sessrgam el
pyeide : T :
-

i SR T

P - - W ———y ey -y

: -,..\15'-.‘7

l'. E C.

.
. LRl
o b B pel [P 4

e n : ,
Lan ¥ = Ay ralhew Pt ey b e o e
.
-

0

-~

Tt s s A e
t‘.‘.‘ - “--vnn:.\is- .

)

-
-

1

e b

et

. 1L
Commeastd Il bonislin il waaing e

Aanh . Akt e

oMb by - : >

e,
it
IR

AR AR E

t
R,

i IEEE-754

-.~oo.o-.-.'t’o.ou--...“~o. -y i s
a . mraly . » . .

'rao'ou':“ . PAEUN o P IMVS An d ge A - - Y,
; hp.o.-c"._ L1350 -.'. _.?‘-- Y
A::-.H“.' T ' ' :

iftoﬁuptéd Stable Diffusion

Reflection off a surface”®

Normal
to the surface

Euclidian distance = sqrt (az + b?)

sin(@) = b / sqrt (a2 + b2?)

Euclidian

Tangent to the surface Distance :

* This example is two
dimensional where the “normal”
to the plane is just (0, 1)

Not Just Lighting

Computation of distance metrics and surface
normals is ubiquitous in many arenas:

* Statistics

* Signal processing

* Robotics

* Simulation

i gjde

Wikimedia Commons contributors, "File:Normal vectors on a curved surface.svg,"

Wikimedia Commons, the free media repository, (accessed November 6, 2022).

https://commons.wikimedia.org/w/index.php?title=File:Normal_vectors_on_a_curved_surface.svg&oldid=642001136

In 9 S OftWElI'@ llbI'aI'y lIl 1 9 5 1 #* Name of Routine. ﬂ,/RE_c_I_s_Bp_o_I_. Date. 7.7 .51
i square vooks and wselproce} sguste roobs,
Cecily Popplewell wrote one of the first software libraries - ££GAE/ @/
on the Manchester Mark I. Ten functions were named in EeP R P
operating manual. ' 5wk 78y =npe/ss
*“half were for input/output and half were mathematical Bk i 19 L
functions.” (Campbell-Kelly 1980 p. 145) i
*The RECIPROOT routine was one of the five RS - Hoe ok S
mathematical functions. RECIPROOT ONE ‘ ol it O e S
A similar routine was written in one of the earliest floating TCIPROOT THWO Electronic Storage.
-point schemes, FLOATCODE, for the next version of the L e e) BT
Mark I Reciproot routine for the Manchester Mark I, September 1951

* The same year Grace Hopper and her team developed the first compiler

Square Root is ditficult to do in hardware

Support for square
root limited even

Table 1. Performance of Recent Microprocessor FPU’s for Double-Precision Operands (* = inferred
from available information; ¥ = not supported)

D Cycle Time Latency [cycles]/Throughput [cycles]
dee intO the [DS] a*b a Xb a+b \/a
p DEC 21164 Alpha AXP 3.33 ns 4/1 4/1 22—-60/22—60* T
Hal Sparc64 6.49 ns 4/1 4/1 8-9/7-8 T
1 9908 HP PA7200 7.14 ns 2/1 2/1 15/15 15/15
HP PA8000 5 ns 3/1 3/1 31/31 31/31
IBM RS/6000 POWER2 13.99 ns 2/1 2/1 16-19/15-18%* 25/24*
Intel Pentium 6.02 ns 3/1 3/2 39/39 70/70
Intel Pentium Pro 7.52 ns 3/1 5/2 30*/30* 53*/63*
Fl $ 2 MIPS R4400 4 ns 4/3 8/4 36/35 112/112
Oatlng-p oint MIPS R8000 13.33 ns 4/1 4/1 20/17 23/20
MIPS R10000 3.64 ns 2/1 2/1 18/18 32/32
PowerPC 604 10 ns 3/1 3/1 31/31 T
Stand ard C()uld n()t PowerPC 620 7.5 ns 3/1 3/1 18/18 22/22
Sun SuperSPARC 16.67 ns 3/1 3/1 9/7 12/10
Sun UltraSPARC 4 ns 3/1 3/1 22/22 22/22

require a hardware

Peter Soderquist and Miriam Leeser. 1996. Area and performance
tradeoffs in floating-point divide and square-root
implementations. ACM Comput. Surv. 28, 3 (Sept. 1996), 518-564.
https:/ /doi.org/10.1145/243439.243481

implementation in
1985™

* National Semiconductor’s software v implementation was supplied to help secure their support for the standard

https://doi.org/10.1145/243439.243481

Some
I implementations

%
% (C) 1991 Linus Torvalds

“ are suspect

/%

* simple and stupid temporary real fsqrt() routine

> 3

* There are probably better ways to do this, but this should work ok.
*/

Linux system sqrt

SGYL_LTIT LIl Ltuyd\oi vy,

1
/%
Unix integer * Add comment here. Explain following algorithm.
*
square root x Trust me, it works.
*

*/

Cnl cat+r2aral racuit1+\

A good approximation is zsefu/

Square root and 1/sqrt & o
are in the critical path f i i ‘ - {}q

* Speed il i i ﬁx s
Important to a wide
variety of use cases

“0x5j37642j” — Sta p\l%szusw 2

Uselul things are sometimes cargo culted
In times of need

767 length = 0;

768 for (1i=0 ; i< 3 ; 1i++)

769 length += v[ilxv[i];

770 length = sqrt (length); // FIXME
Ik

772 return length;

/73 s

Quake II Source code, 1997

https://github.com/id-Software/Quake-2/blob/372afde46e7defc9dd2d719a1732b8ace1fa096e/game/q_shared.c#L770

Enter the Fast Inverse Square Root

float Q_rsqrt(float number)

{
long 1i;
el ne D@4 \r
const float threehalfs = 1.5F;
X2 = number x 0.5F;
y = number;
=\ long Xk) &V // evil floating point bit level hacking
i = Ox5f3759df - (i > 1); // what the fuck?
yo = (Tloat £) &
y =Y x (threehalfs - (x2 xyxy)); // 1st iteration
// y =Yy % (threehalfs - (x2 xy xy)); // 2nd iteration, this can be removed
return y,;
s

Quake III source code, 1999

https://en.wikipedia.org/wiki/Fast_inverse_square_root

| said | wouldn’t explain but...

x (long *) &y; @

|
S
X
Ul
-
W
~J
Ul
O
Q.
—y
|
—
et
i

x (float x) &i;@ 4
=V % (threehalfs = (X2 Xy *xy))T

< <
[

For our purposes, the FISR has three components:

1. A transformation of the input to allow for approximate
division of the logarithm of the input by two (and back
again)

2. A constant which the above is subtracted from

3. A final step which uses an iterative algorithm to converge on
the output

All three together net a close approximation to 1 / sqrt(x)

1 /sqrt(x)

y:

3.0

2.5

2.0

1.5

1.0

What does this approximation look like?

Linear interpolation along powers of 2

@® Exact 1/sqrt(x)

@® Linear approximation

® Quake llI's implementation

Error

04

0.3

0.2

0.1

0.0

-0.1

Error from reference 'hops' along even powers of 2

@® Exact 1/sqrt(x)

@® Linear approximation

© AQuake lII's implementation

2—4

2—3

2—2

Error

Fn(x)

0.002

-0.002

0.4 0.8

0.0

Comparison over a common input domain

1.0 15 2.0 2.5 3.0 3.5 4.0

|] |] | | |

® Seen in Quake3 (1999) [2001] Blinn's baseline constant

| ! !
2° 2! 2°

Input x
Cumulative Distribution of Error
[| | | |
-0.004 -0.002 0.000 0.002 0.004

Error

Dramatic accuracy
Improvements

With an input scaled to
l<x<4

Dramatic
improvement over a
‘naive’ constant

. /, y/ / r, . : :. 7 ,//
/// 7, /%/ ”." 5/ ///// '
T R i I/ /‘ // /,/ 7, , //,//
e (curlprev) O 17:21, 24 October 2022 Adakiko (talk | contribs) m . . (34,141 bytes) (+6) . (Reverted edits by X922073 (talk): unexplained content removal (HG) (3.4.10))

(undo) (Tag: Rollback)
e (curlprev) O 17:20, 24 October 2022 X922073 (talk | contribs) m .. (34,135 bytes)(6) (remove fuck) (undo) (Tags Reverted, V/sual edit)

That’s all well and good, but...

™

'//

. T TR i TSR R/ /) /) /1)/
e (curl prev) 14:34, 24 June 2021 David Eppstein (talk | contribs) . (34 414 bytes) (0 (Und/d revision 1030180714 by 94.1.114. 3 (talk) Not this

shit again. Please do not change the direct quote. See WP:NOTCENSORED.) (undo | thank) (Tag: Undo)

e (curl prev) 10:50, 24 June 2021 94.1.114.3 (talk) .. (34,414 bytes) (0) . . (full word "Fuck" inappropriate in article. changed to f**k) (undo) (Tags:

Reverted, Visual edit)
e (curlprev) O 11:17, 30 August 2018 NickyMcLean (talk | contribs) . . (28,812 bytes) (+58) . . (Undid revision 857222390 by 37.115.28.79 (talk) This issue has been
discussed before and appears in the original source, though I'm not sure about the "evil") (undo) (Tag: Undo)

e (curl prev) O 10:08, 30 August 2018 37.115.28.79 (talk) . . (28,754 bytes) (-58) . . (Removed profanity and non-useful text from the comments to the code) (undo) (Tag:
Visual edit)

Wl T e

// evil floating point bit level hacking
// what the =ikt

F orest Garden
Corrupted Stable Diffusion

T I AIOTTITIT T

Was it “from™ Quake 1117

87. Beyond the examples above, Copilot regularly Output’s verbatim copies of
Licensed Materials. For example, Copilot reproduced verbatim well-known code from the game

Quake III, use of which is governed by one of the Suggested Licenses—GPL-2.!"

Litigation against Github Co-Pilot, October 17, 2022

R ——

“Floating-point arithmetic” — Stable Diffusion

https://githubcopilotlitigation.com

Partial view of a citation network

Moroz et al.(Optimal constants)
Reinforcement learning

Data preprocessing

Low-power ICs

Linus’s implementation
In Linux for Alpha (1995)

Sussin & Wanner
(low precision floats)

FPGAs for ML
Microcontrollers

Interstate 76 (1997)

Cleve Moler &

ke 11T Hardware impl.
Greg Walsh (~1986-1993) Quake [Il's g LI

Fast Inverse Square Root](E; g (; ;})7 Stress /strain est.
(1999) [2001] Type safety tests

Kadlec 2010
Matrix impl.
Hands et al. 2011

Implementation

Error

0.02

0.01

0.00

0.01

-0.02

How can we tell they are connected?

Kahan-Ng modified

Kahan-Ng (1986) to remove lookup

Quake 3 (1999)

wn wn
- -
o o
(= o
ol .
o o
wn un
S =
o o
o f=]
S 3
o o
wn wn
S =
= =
o o
- -
= =
wn wn
- -
¢ S

| I)) | | T | O T |

272" 2° 2' 2 272" 2 2! 2 22" 2 2' 2
64 entry lookup table No lookup table

Kahan-Ng function breakdown available on github

https://gist.github.com/Protonk/f3c5bb91f228ffec4d4c5e2eb16e489d

No. Really. How do we know they are

connected?

@ Joao Henriques on 26 Jun 2012

It's amazing how one can squeeze so much out of so limited machine instructions! | particularly liked reading about
the math that in the end produced this neat approximation. It reminds me of Carmack's (much hackier) inverse square
root trick (http://en.wikipedia.org/wiki/Fast_inverse_square_root).

Reply &0

@ Cleve Moler on 27 Jun 2012

Jotaf -- Thanks very much for your comment, and for reminding me about the fast inverse square root hack. | didn't
realize that the trick had attained a kind of cult status in the graphics community. The trick uses bit-fiddling integer
operations on a floating point number to get a good starting approximation for Newton's iteration. The Wikipedia
article that you link to describes the trick in great detail, and also links to an article by Rys Sommefeldt about its
origins. Sommefeldt goes back to the late '80s and to me and my colleague Greg Walsh at Ardent Computer. | actually
learned about trick from code written by Velvel Kahan and K.C. Ng at Berkeley around 1986. Here is a link to their
description, in comments at the end of the fdlibm code for sqgrt. http://www.netlib.org/fdlibm/e_sqrt.c . - Cleve

Reply 40

> re-use (with or without citation), reimplementation,
Inspiration, passage, ...

Software
for the Proposed Coonen

IEEE Floating-Point (1984)
Standard
(1980)

Mark I
Reciproot Kahan’s Magic SORT

on PDP-10 (Post 1970)

*

Kahan on IBM 7090

(1962)

@ Implementation

Embedded a few different ways

y=1lgX
5 e — —=——7 = 1g N (approx)

5 10 15 20 25 30 35
I N] i A o 0 A OB R P A A 6 O e T o AR e T I)

Fig. 2—Logarithmic curve and its straight-line approximation.

Mitchell

J. N. Mitchell, "Computer Multiplication and Division
Using Binary Logarithms," in IRE Transactions on

Electronic Computers, vol. EC-11, no. 4, pp. 512-517, Aug.

1962, doi: 10.1109 / TEC.1962.5219391.

1984

of logo{1.f) versus O.f

O Of]

Coonen

J. T. COONEN, "CONTRIBUTIONS TO A PROPOSED
STANDARD FOR BINARY FLOATING-POINT

ARITHMETIC (COMPUTER ARITHMETIC). PhD Thesis,

University of California Berkeley, 1984.

—b
o

Interpreted as integer
oo

S N A O

0.0

e n..vr’., gL
W‘ \",.\“1 e
Shl B
e 2

i SR TR R
:gggsamg “4& gg‘%ﬁé&

sl b
3 EEI ;" 8
Kg n‘:‘,g:%‘{:l; ,é\uu 1 wet

218554 8

.lgg:t i uﬁnug}...»
it 3

10 20 3.0 40 5.0 6. 7.0

Interpreted as float

Blinn

J. F. Blinn, "Floating-point tricks," in IEEE Computer
Graphics and Applications, vol. 17, no. 4, pp. 80-84, July-
Aug. 1997, doi: 10.1109/38.595279.

https://doi.org/10.1109/TEC.1962.5219391
https://doi.org/10.1109/38.595279

Fast hardware multipliers

Logarithmic converters

Approximate Arithmetic Circuits Fast HDR encoding
BRDF encoding

Low-power IC trig

Neural Nets
Integer quantization
Gradient descent

Mitchell
(1962)

Schraudolph

o Trick of the trade

N NN

‘0
‘ ‘0
.
.
*
‘0
.

T'he space gets busy

2000 Floating-point radix sort
Hecker, C. (1996). Let's get to

the floating poin't. Game Tatkovw ki Ko(1995).12 - Implementation by Matthew
Developer Magazine, 19-23. Computing the Inverse Jones, 2000

Square Root. In Graphics
Gems V (Macintosh Version)

(pp- 16-21) VAX float implementation,

1997
FDLIBM C math library, 1993
KarmaFX Floating-point
Tricks, 2003 e .
Community implementation
on Paul Hsiegh’s page, 2001
’4 /
9090 000 "0 -90-0 -9 @0 o
¢ 00 000 ADA implementation, 2001
' Lee, K. H. (1973). Survey of
floating-point software
arithmetics and basic library
mathematical functions, Warren, Henry S. Hacker’s
University of Glasgow PhD delight. Second Edition.

Thesis Pearson Education, 2013.

Just what 1s being shared?

A half-dozen diagrams ago I mentioned that
the FISR has essentially three components:

* Logarithmic transformation (c.f. Mitchell,
Coonen)

+ Exact constant to minimize error when

restoring exponent (Kahan 1999, Moler &
Walsh, etc.)

* Newton-Raphson iteration (ubiquitous in
numerical computation)

ol

PP W T 1

bl b

|

00 150 S 1

N

A
TEWETS

|
A

-

POV [T [|

)
bl

A0
-

i~ i
T

[
iy

M
. N

/vy

” oL 1) bt

.
-
| =8

A

b
o

y

Jo

=

il

;
-

|
E

TN

E 13

| N"'

v

|
~ -
—ad

. Js IR,
.ﬂF"iﬂ'

IHJ |- 5

W‘??ﬁ‘:}[":?”ﬂf"!?ﬁ"ﬂf?“

PN B ML . M
_ A

1L LRl [

. h@mu
JJIA'”""’ e

urk iy

R nf’/”—

Jill
L
,u',"'
Al

/ N
‘ 1A

Ll
MYy

M‘r""' d
/. ,dﬂ
) ‘T

Jiv

i

AV

4
‘1 : o
a 'y
' ! o B
L 3 Ll
w
e ‘

ulf yMUfH

L
urpm

'
" ‘|
.JA‘ml

e

AEel

2 i £

il

B
2 |

L&
.
7' 358
i S Ly
-
!

L s § 2 M1, 4 ."..;'_,-S.. B«.,‘Hr' L.l:?" ':’-;' ¥t
Eﬁ!m‘?tad&l;ﬂ#:{hd&;mh;. LB

-flﬂﬁﬂkw;JfEm
gt [TNREr BT R | B

TRl T

!

BN

0,’

C'

ik

=

4

mﬂm%

i
-

-'v

18 “q

| avl

Space gets busy in the 1990s specifically

* This might be an artifact of what is saved or what I can follow, but...

* 1990s sees huge boom in:

* Consumer miCroprocessors

* Programming environments to explore memory tricks

“ Applications where digit accuracy is not necessary (e.g. video games)

* By 2002 there are about a dozen known implementations which do not stem
from Quake III, Mitchell’s paper, or Blinn’s article

+ The constant itself,
0x5F3759DF i1s a good
Sstart

Identifies single-precision
version which likely stem from
the Moler/Walsh collab.

Not shared among related works

* But: won’t identity
works by influence.

How to track

Absolute Error

0.000 0.002 0.004 0.006 0.008

-0.002

Comparison after Newton-Raphson correction

Input x

0.5 1.0 1.5 2.0
' l | | |
§ § ® Kahan's 'Magic' Square root (1980) [1974]
§ § ® Kahan-Ng SoftSqrt (1986)
§ § ® Seen in Quake3 (1999) [2001]
® State of the art in Moroz et al. (2018)
1 i 1 1 1
24273 27 2" 2° 2"

What now?

“ The concept of a logarithm inherent in
floating-point representation is
simultaneously magic and mundane.

« Patterns of citations for the FISR are very
Curious.

* Can we find *where” people learn a “trick of
the trade”?

Floating-point computation, Corrupted Stable Diffusion

T'hank you!

Follow 0x5f37642f.com™ for more developments

* SEO is dead, long live being impossible to Google

http://0x5f37642f.com/

