
THE MATHEMATICS BEHIND THE FAST INVERSE SQUARE ROOT FUNCTION CODE

Charles McEniry
August 2007

ABSTRACT

In the recent past, much ado has been made about the origin and operation of the fast inverse of
the square root function found in online code libraries. Although plenty of coverage has been
given to the use of the Newton-Raphson method for finding roots in the algorithm and the
processing cost of the algorithm code, conversely, very little coverage has dealt with the
mathematics behind the initial approximation used in the algorithm. Thus, using a mathematical
approach, this article deals with the derivation of the code’s infamous magic formula and
possible methods used to determine an optimal value of the formula’s magic number.

INTRODUCTION

Ryszard Sommefeldt republished an article (http://www.beyond3d.com/content/articles/8/) in
late 2006 on the quest for the origin of the fast invsqrt function code. The article traced through
the memories of graphic programming luminaries John Carmack, Terje Mathisen, and Gary
Tarolli, but brought no solid conclusion as to who originated the code. The article did prompt a
Slashdot effect leading to a second article (http://www.beyond3d.com/content/articles/15/) and
revealed Greg Walsh, working with Cleve Moler roughly twenty years ago or more, as the most
likely origin of the code. Even before the release of the Quake 3 Arena source code in the
summer of 2005, discussions about this function code have appeared on various online postings,
news groups, and forums over the past several years. Most notably of the postings was the paper
(http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf) by Chris Lomont in early 2003.

float InvSqrt (float x){
 float xhalf = 0.5f*x;
 int i = *(int*)&x;
 i = 0x5f3759df - (i>>1);
 x = *(float*)&i;
 x = x*(1.5f - xhalf*x*x);
 return x;
}

For those who have not wandered upon this topic before, the function code implements a fast
evaluation of the inverse or reciprocal of the square root of the input value for floating-point
numbers based upon the IEEE standard for 32-bit binary floating-point numbers, in short, by
using the Newton-Raphson method with an initial guess determined from the input value. For
graphics programming, especially twenty years ago, this code provided a significant advantage in
performance over using the nominal method of calling the square root function and performing
floating-point division, but at a loss of precision. Ideally, the constant used in the function is such
that the maximum relative error for all possible input values is reduced to a minimum and within
application tolerances. Today, most graphical processing units and many of the additional
instruction sets for processors implement similar, but more complex, methods in the hardware.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1

x

x

Although many have used the term magic to describe what the code does, the magic is really just
the clever application of some mathematical methods and techniques along with taking
advantage of the IEEE representation format for floating-point number. So, instead of having the
classical proof by divine intervention reason of “then a miracle occurs…” to describe the magical
line, the magical line is derived mathematically, based upon the linear relationship between the
logarithms of the input value and the desired output value. The resulting equation can then be
subjected to error analysis and numerical methods for optimization and error reduction.

10− 5− 0 5 10
4−

2−

0

2

4

log2
1

x









log2 x()

DERIVATION

Given the IEEE representation format for 32-bit binary floating-point numbers:

S E M
bit1 bits8 bits23
31bit 2330 →← bits 022 →← bits

where S is the sign bit with a 1 for denoting a negative number, E is an 8-bit biased exponent,
and M is the remaining 23 bits representing a mantissa; the value represented is:

BES Mx −−= 2).1()1(with 127=B as the bias.

And, the integer I corresponding to the 32-bit value is:

MESI +⋅+⋅= 2331 22 .

Since 0≥x for xy 1= , then 0≥y , 0=S , and, simply:

1272).1(−= EMx and MEI +⋅= 232 .

Alternately and correspondingly, with any n -bits binary representation with a b -bits exponent,

S E M
bit1 bitsb bitsbn)1(−−

bitsn

the values of x and xI are:

xe
xmx 2)1(+= and xxx MLEI +=

where L
M

x
xm = and BEe xx −= with bnL −−= 12 and 12 1 −= −bB .

Thereby: xy 1=

xy 22
1

2 loglog −=

xxyy emem 2
1

22
1

2)1(log)1(log −+−=++

Given xx ≈+)1(log2 for 10 ≤≤ x , let σ+≅+ xx)1(log2 .

xxyy emem 2
1

2
1

2
1 −−−=++ σσ

LBEMLLBEM xxyy)()(2
1

2
1

2
3 −−−−=−+ σ

)()(2
1

2
3

xxyy MLELBMLE +−−=+ σ

Thus, xy IRI 2
1−= where LBR)(2

3 σ−= .

Hence, the equation xy IRI 2
1−= corresponds to the magical line in the function code,

i = 0x5f3759df - (i>>1);

where 0x5F3759DF=R , and the resulting value for σ is 187579168701170.04504656=σ .

ANALYSIS

From the equation xy IRI 2
1−= , first, determine separate equations for yE and ym in terms of

xE and xm , directly or indirectly:

xy IRI 2
1−=

)()(2
1

2
3

xxyy MLELBMLE +−−=+ σ

Let }1,0{=φ depending on whether xE is even or odd, and let)(' 2
1

xx mm += φ .

() xxyy mEBmE ')31(13 2
1

2
1 −−++−−=+ σφ

Thus, ()φ+−−= xy EBE 132
1 and xy mm ')31(2

1 −−= σ .

From the IEEE representation format, constraints on yE and ym are (1)  yy EE ≡ or yE is an
integer, and (2))1,0[∈ym . Determining the equations for yE and ym according:

()
()
()





−−
−−
−−

=

x

x

x

y

EB
EB
EB

E
23
33
13

2
1
2
1
2
1

 and






−−
−−
−−

=

x

x

x

y

m
m
m

m
')1(
')1(
')31(

2
3
2
3

2
1

σ
σ
σ

 for








<≤
<<−

−≤≤

1'
')31(

)31('0
:'

2
1

2
1

2
1

2
1

x

x

x

m
m

m
m σ

σ
 and







1
0
0

:φ

Solving for σ in 2
1

2
1)31(0 ≤−≤ σ returns 3

10 ≤≤ σ as the bounds of σ . The following figure
plots the true value of ym and the equation),'(σxy mm for 1'0 <≤ xm and },,,0{ 3

1
6
1

9
1∈σ .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

my.true m'x()
my m'x 0, ()

my m'x
1

9
, 





my m'x
1

6
, 





my m'x
1

3
, 





m'x

Let 0y represent y determined by xy IRI 2
1−= , and let nn yy −=ε . Therefore,

y
y

y
nn

n −==Ε 1ε
.

Solving for 0Ε :

[] []

() () }3,2,1{},3,1{,
21

2')3(11
)3(

2
1

0

2
1

∈∈
⋅+

⋅−−+−=Ε −

−−−

Kk
m
mk

BE
y

BEKB
x

y

xσ

Letting)3(2
1

xy EKBE −−≅ ,

()y
xy

m
mkm

+
+−−

≈Ε
1

')3(2
1

0

σ

Thus, xm'0 ∝Ε , and 0Ε is not directly dependent upon xE , but only if xE is even or odd, which
is accounted for by)(' 2

1
xx mm += φ , however, 0Ε is discontinuous at the transition point of

)31(' 2
1 σ−=xm . This relationship implies that only a continuous subset of x is needed to

determine the maximum relative error for the approximation, and, likewise, only a corresponding
range of values for I is needed. The advantage is doing fewer iterations and calculations to
determine the maximum relative error per value of σ tested, especially if those operations are
being performed on a system from roughly twenty years ago.

The resulting value of y from yI is an approximation of x1 with an error related to R and
the value of σ used to calculate R . By using an iterative method where ()1, −= nn yxFy , the
error of the approximation is reduced. However, generally, instead of iterating the function
directly, the equation is rewritten in a form of

)()(1 yfxyg −−=

where the desired value of y is a root of)(yg , and a root-finding method is implored to
determine a value for y which is the approximate solution to)(xfy = for the given x . Since an
initial value for y is known, a trivial method to use is the Newton-Raphson method for root-
finding. The equation for)(yg is

2
2

1)(−−=−= yx
y

xyg

Equation for)(' yg : 32)(' −= yyg

Newton-Raphson formula:)('
)(

1
n

n
nn xf

xfxx −=+

Resulting equation for 1+ny :)3(2
2
1

1 nnn xyyy −=+

Applying nn yy −=ε : () ()()2
2
1

1 3 nnn yxyy εεε −−−=− +

Solving for 1+nε :)3(2
2
1

1 nnn yx εεε −=+

Solving for 1+Ε n :)3(2
2
1

1 nnn Ε−Ε=Ε +

Thus,)3(0
2

02
1

1 Ε−Ε=Ε

Since, xm'0 ∝Ε , and 0Ε is not directly dependent upon xE , therefore, xm'1 ∝Ε , and 1Ε is not
directly dependent upon xE . Again, the benefit is doing fewer iterations and calculations to
determine the maximum relative error per value of σ tested.

CALCULATIONS

Although σ is bounded by],0[3
1 , for any value τσσ >: , where τ corresponds to)(τ+x

tangent to)1(log2 x+ , produces exceeding larger errors. Thus, σ is better bounded by],0[τ .
The following figure displays the plots of)1(log)(2 xxf += , xxf =)(, 3

1)(+= xxf , and
τ+= xxf)(.

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

log2 1 x+()

x

x
1

3
+

x τ+

x

For the equation:

σ+=+ xx)1(log2 ,)1,0[∈x ,

let],0[τσ ∈ where τ is the value of σ such that)()1(log2 σ+⊥+ xx . Calculating for τ using

xx −+=)1(log2τ where x :)()1(log2 τ+=+ x
dx
dx

dx
d

results with 76923887573098720559342060.086071331)ln(=+−= ααατ

where 2ln1=α , 1−= αx , and)ln()1(log2 αα=+ x .

For],0[τσ ∈ , maximum errors of)()1(log)(2 σε +−+= xxx occur at 0=σ and τσ = . To
minimize the maximum errors, let],0[τη ∈ such that

() () ()ηητ +−=+−+ xxxx .

Solving for η gives 88461443786549360279671030.043035662
1 == τη .

To minimize the total error of)()1(log)(2 σε +−+= xxx for],0[τσ ∈ , let],0[τµ ∈ such that

() ()[] 01log
1

0 2 =+−+∫ dxxx µ .

Solving for µ gives 98108640075318991110365920.057304952
3 =−= αµ .

The figures below plot)()1(log),(2 σσε +−+= xxx and),(σε x for },,,0{ τµησ ∈ and
10 ≤≤ x .

0 0.2 0.4 0.6 0.8
0.1−

0.05−

0

0.05

0.1

ε x 0, ()

ε x η, ()

ε x µ, ()

ε x τ, ()

x

0 0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

0.1

ε x 0, ()

ε x η, ()

ε x µ, ()

ε x τ, ()

x

Let),(0 σxy represent y derived using xy IRI 2
1−= with LBR)(2

3 σ−= :

() () ()[] () }3,2,1{},3,1{,23121),(2
1

2
1

0 ∈∈⋅−−+=⋅+= −−− Kkkxy xxyy EKB
L
MBE

L
M σσ

Let),(1 σxy represent y derived using the Newton-Raphson method with),(0 σxy :

()2
002

1
1),(3),(),(σσσ xyxxyxy ⋅−=

And, let the equations for the relative error of),(0 σxy and),(1 σxy , respectfully, be

x
xyx

1
),(1),(0

0
σσ −=Ε and

x
xyx

1
),(1),(1

1
σσ −=Ε .

The following figures plot 0Ε , 0Ε , and 1Ε for various values of σ against)1,0[':' ∈xx mm .

0 0.2 0.4 0.6 0.8
0.1−

0.05−

0

0.05

0.1

Ε 0 x m'x() 0, ()
Ε 0 x m'x() η, ()
Ε 0 x m'x() µ, ()
Ε 0 x m'x() τ, ()

m'x

0 0.2 0.4 0.6 0.8
0

0.02

0.04

0.06

0.08

0.1

Ε 0 x m'x() 0, ()
Ε 0 x m'x() η, ()
Ε 0 x m'x() µ, ()
Ε 0 x m'x() τ, ()

m'x

0 0.2 0.4 0.6 0.8
0

0.005

0.01

0.015

Ε 1 x m'x() 0, ()
Ε 1 x m'x() η, ()
Ε 1 x m'x() µ, ()
Ε 1 x m'x() τ, ()

m'x

To exemplify 0Ε , and 1Ε over)1,0[':' ∈xx mm , the following additional figures show the
repeating pattern of 0Ε , and 1Ε over a sample range of x .

1 10 100 1000
0.1−

0.05−

0

0.05

0.1

Ε 0 x 0, ()

Ε 0 x η, ()

Ε 0 x µ, ()

Ε 0 x τ, ()

x

1 10 100 1000
0

0.005

0.01

0.015

Ε 1 x 0, ()

Ε 1 x η, ()

Ε 1 x µ, ()

Ε 1 x τ, ()

x

The following plot better illustrates the response of 1Ε to both xm' and σ with]1,0[' ∈xm and
]1.0,0[∈σ , limiting]01.0,0[1 ∈Ε .

E1

Given the response of 1Ε to xm' and σ , to minimize the maximum relative error of 1Ε , the
value of σ needs to be found for the following:

() ()2
1

2
3

2
1

12
3

2
1

1 '),,'(max'0),,'(max <<−Ε=−≤≤Ε xxxx mmmm σσσσ

The following figure illustrates the response of ()1max Ε against σ .

0 0.02 0.04 0.06 0.08
0

0.005

0.01

0.015

Ε 1.max σ()

σ

OPTIMIZATION

Part of optimizing the function code is determining the value of R that minimizes the maximum
relative error over all possible inputs. Although not very practical, the basic method to determine
R is brute force iteration over all possible inputs with all possible values of R for],0[3

1∈σ , but
this would result in a considerable number of calculations and conditional evaluations, costing
considerable amount of time for processing, especially, on a system from roughly twenty years
ago. Given the repeating pattern of the error evaluation, 1Ε , as shown earlier, the range of input
values can be considerably reduces, to less than 1% of the input range for the IEEE 32-bit float.
Additionally, the range of possible values for R can be reduced to the range corresponding to

],0[τσ ∈ ,)()1(log: 2 ττ +⊥+ xx , as determined previously, to roughly 26% of the initial range
of values for R . Presumably, the optimal value for R would exist between ησ =:R , the σ
minimizing the maximum error of)()1(log)(2 σε +−+= xxx , and µσ =:R , the σ
minimizing the total error of)()1(log),(2 σσε +−+= xxx , closer to the former. This reduces
the range for values of R to roughly 5% of the initial range. These combine to reduce a brute
force approach to iterating over less than 0.04% of all possible inputs and all possible values of
R . Finally, instead of using straight linear brute force and given the response of 1Ε to xm' and
σ , a bisecting method, similar to finding the minimum or maximum of a polynomial segment,
may be applied to determining the optimal value of R . The following table gives the maximum
number of iterations possibly performed, with 8388608 iterations per each value of xE and)(σR

Iterations],0[3
1∈σ

Linear
],0[τσ ∈

Linear
],[µησ ∈

Linear
],[µησ ∈

Bisecting

(4194304) (1083028) (179549) (18)

xE∀ (254) 8936830510563328 2307614719206848 382566761366852 38352715776

xm' (2) 70368744177664 18170194639424 3012336703676 301989888

The corresponding percentages for the previous table are listed below.

Iterations],0[3
1∈σ

Linear
],0[τσ ∈

Linear
],[µησ ∈

Linear
],[µησ ∈

Bisecting

%

xE∀ 100 25.8 4.28 0.00429

xm' 0.787 0.203 0.0337 0.00000338

Depending upon the precision used in the error analysis, using brute force iteration results in
0x5F375A85=R or 0x5F375A86=R , as previously presented by Chris Lomoth

(http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf) after having reduced the range to iterate
over. Using the bisecting method provides a quicker means to find a solution, but the bisecting
method is not without pitfalls. Because the bisecting method proceeds with a subinterval based
upon the evaluation at the midpoint, the method may inadvertently proceed with the wrong
subinterval if the appropriate endpoint has a higher associated maximum relative error than the
other endpoint. In this case, the bisecting has “stepped over” the actual minimum. The new
endpoint or the other endpoint is the minimum on selected subinterval, and the bisecting
converges to that endpoint. Using a weighted or adaptive bisecting method may avoid this case,
but may require more bisecting iterations, as shown in the following list:

Result,
Max. Rel. Error,

Bisecting Iterations
Total Iterations

Average
(Fair)

Bisecting

Heavily
Weighted
Bisecting

Lightly
Weighted
Bisecting

()(4
1 ηµδ −=) #

0=σ ,0x5F400000
τσ = ,0x5F2F796C

0x5F37598F
0.00175281170385233

21
176160768

0x5F373C65
0.00179984232160280

13
109051904

0x5F375A86
0.00175127001276110

39
327155712

ησ = ,0x5F37BCB6
µσ = ,0x5F34FF59

0x5F375A16
0.00175195107385662

18
150994944

0x5F375895
0.00175435792917256

11
92274688

0x5F375A86
0.00175127001276110

34
285212672

δησ −= ,0x5F386C0D
δµσ += ,0x5F345001

0x5F375A83
0.00175127879737136

19
159383552

0x5F36F819
0.00191248533062094

12
100663296

0x5F375A86
0.00175127001276110

35
293601280

ησ = ,0x5F37BCB6
δµσ −= ,0x5F35AEB0

0x5F375A16
0.00175195107385662

18
150994944

0x5F376FAD
0.00180539383568146

11
92274688

0x5F375A86
0.00175127001276110

33
276824064

To avoid possible pitfalls with bisecting, alternate approaches may have been used in the past.
Previously, the computing cost of iterating for a single value of both xE and)(σR was

significant. To further reduce the total number of iterations, a more mathematical approach could
have been used, such as a predictive method. Given that ())1,0[',),'(max 1 ∈∀Ε xx mm σ , as

optimalσσ → , is decreasing towards optimalσσ = , from both the right and the left, let the functions
of ()σ,'1 xmΕ for both the left and right be in the quadratic form of:

() CBAm optimal

xmx ++=Ε →

∈∀
σσσ σσ 2

)1,0['1),'(max

Let point ()())1,0[',),'(max,),(1 ∈∀Ε= xx mmvu σσ . With additional points),(vu iterated, the
Lagrange interpolating polynomials for the both the left and right polynomials can be determined
with a minimum of six points—three points used to determine the left-side polynomial, and three
points for the right-side polynomial—and, thus, six iteration over)1,0[':' ∈∀ xx mm . The
calculated intersection of the two polynomial equations would approximate optimalσσ = .

The Lagrange interpolating polynomial is defined by:

∑ ∏
=

≠
= −

−=
n

j

n

jk
k kj

k
j xx

xxyxP
1 1

)(

The polynomial for the three points),(vu on either side:

() ()
() ()

()()
()()

() ()
() () 3

2313

21
2

3212

31
1

3121

32)(v
uuuu
uuuuv

uuuu
uuuuv

uuuu
uuuuuP

−−
−−+

−−
−−+

−−
−−=

To further reduce, and simplify, the polynomial equations, also reducing the computing cost, let
δ−= au1 , au =2 , and δ+= au3 , thus:

()() () ()()2
2

312
12

32
1

212
11

2)(vauvvauvvvuP δδ
δ

+−−−−+−=

Rewritten in the form of CBuAu ++2 gives the following coefficients, with simplification:

()32
1

212
11

2 vvvA +−=
δ , () δ312

12 vvaAB −−−= , aBAavC −−= 2
2 .

Thus, the intersection of the left and right side polynomials, defined by:

rightrightrightleftleftleft CuBuACuBuA ++=++ 22

has a real solution, determined from the quadratic formula, which approximates the value
optimalσσ = and, therefore, approximates the optimal value)(optimalR σ for the function code,

dependent upon the iterated data points. Using this predictive method, the table below lists
approximation value of optimalR σσ ≈: for the given values of a and δ .

lefta righta δ σR ()()σ,'max 1 xmΕ

δη − δµ −)(4
1 ηµ − 0x5F375A91 0.00175137771629619

δη − µ)(4
1 ηµ − 0x5F375A9F 0.00175151631478343

δη − δµ +)(4
1 ηµ − 0x5F375AFB 0.00175242876177617

δη − µ)(2
1 ηµ − 0x5F375A88 0.00175128948205849

δη − δµ +)(2
1 ηµ − 0x5F375B3B 0.00175306525834174

δη − δµ +)(4
1 µτ − 0x5F375B39 0.00175304601624759

δη − δµ +)(2
1 µτ − 0x5F375BD5 0.00175459372633202

Using the predictive method can reduce the number of iteration runs over all value of xm' to less
then ten runs—six runs to get needed data points for the Lagrange interpolation polynomial—but
may require additional runs to refine the value. However, the number of runs, and therefore the
total number of iteration, would be less than using than using bisecting. The minimum total
number of iterations using a predictive method is 50331648 individual iterations, or
0.0000005632% of the full iteration over all xm' and σ values.

Going back to the response plot of 1Ε and the equation for 0Ε , let the value optimalσσ = be the
solution of:

() ()2
1

2
3

2
1

12
3

2
1

1 '),,'(max'0),,'(max <<−Ε=−≤≤Ε xxxx mmmm σσσσ

Now, in addition to using a bisecting method for the iteration over the values of σ , a bisecting
method may also be applied to the determination of the maximum value of 1Ε for the range

)31('0 2
1 σ−≤≤ xm , but no iteration is needed over the range 2

1
2
1 ')31(≤≤− xmσ because the

maximum of 1Ε on that segment occurs at)31(' 2
1 σ−=xm . This double bisecting method

provides a result of ~525 iterations and 10x5F375A87 ±=R depending upon starting conditions
and precision. This is 0.0010431% the number of iterations against the best case using the
predicting method above, and, amazingly, 5.8745E-12% or roughly six-trillionth of a percent
against the full range.

Finally, instead of iterating to determine an optimal solution, a mathematical approach shall to be
used. Returning to the constraint equation from above:

() ()2
1

2
3

2
1

12
3

2
1

1 '),,'(max'0),,'(max <<−Ε=−≤≤Ε xxxx mmmm σσσσ

For the right-side of the equation, the maximum value of 1Ε occurs at)31(' 2
1 σ−=xm . For the

left-side of the equation, the maximum value of 1Ε occurs at

σ2
3

2
11 '0,0

'
:' −≤≤=Ε

x
x

x m
dm
dm

From)3(0
2

02
1

1 Ε−Ε=Ε , ()[]
dp
d

dp
d 02

02
11 11 ΕΕ−−=Ε

The maximum occurs at 00 =Ε , 20 =Ε , and 00 =Ε
dp
d

.

Given)(' 2
1

xx mm += φ and 0=φ for 2
1'0 <≤ xm , thus xx mm 2

1' = , and calculating for 0Ε :

()
()y

x

m
m

+
−−−=Ε

1
331 2

1

0
σ

Solving for ym in terms of xm' or xm for [])31(,0' 2
1 σ−∈xm gives () xy mm '2121 +=+ or

() xy mm +=+ 121 .

xx mm +−−−=Ε 1)33(1
22

1
0 σ

Let xmp += 1 and () xx mmw ++−= 133 σ or () ppw −−= σ34 .

w
22

1
0 1 −=Ε and () pp

dp
d 433

24
10 −+=Ε σ

Therefore, { } () () 08434322|0 223
0 =−−+−+→=Ε σσ ppp and σ−=→=Ε

3
40 0 p

dp
d

.

Solving for the maximum along)31('0 2
1 σ−≤≤ xm gives

σ−= 3
1

xm or σ2
1

6
1' −=xm

And, for the right-side, σ31 −=xm or σ2
3

2
1' −=xm

Thus, solving for the rightleft 11 Ε=Ε gives 6806571460.04503327=σ and 0x5F375A86=R .
Calculating for the double-precision floating-point number, where 64=n and 11=b , gives

C7B537AA0x5FE6EB50=R .

CONCLUSION

Hopefully, this article has answered the questions surrounding the function code for the fast
inverse square root function and shown what is behind the magic curtain of the function code.
Applying an approximation for the base 2 logarithm resulted in the mathematical derivation of
the magic code line, and analyzing the resulting error from the approximation provided for an
evaluation of the optimal value for the magic constant in the code. This means of derivation may
be applied to more general equations providing for the following:

n xy 1= n xy = axy =

() xnn
n

y ILBI 11)(−−= + σ () xnn
n

y ILBI 11)(+−= − σ () xy aILBaI +−−=)(1 σ

)1(00
1

1
n

n xynyy −+=)1(00
1

1
n

n xynyy −−−=)1(1
001

aaxyayy −+−=

The optimal constant value varies for each root or power function. However, for the great
majority of root or power functions, the evaluation will not be able to take advantage of integer
operations if implemented in code. Also, remember ()xxx 1⋅= .

Finally, as a last suggestion, the following function code is provided as an alternative:

float inv_sqrt(float x)
{
 union { float f; unsigned long ul; } y;
 y.f = x;
 y.ul = (0xBE6EB50CUL - y.ul) >> 1;
 y.f = 0.5f * y.f * (3.0f - x * y.f * y.f);
 return y.f;
}

Adjusting for double-precision floating-point numbers changes the “float” to “double”, the
“unsigned long” to “unsigned long long”, and the constant from above to the unsigned long long
value of 0xBFCDD6A18F6A6F55ULL.

ENDNOTE

The primary intent behind this article is to explain the mathematics behind the fast inverse square
root function code, and, hopefully, recreate the method or approach that was possibly used for
development of the original code and the value 0x5f3759df=R . Although none of the various
methods discussed to find the optimal value were able to derive the value 0x5f3759df=R , the
value 0x5f3759df=R did occur in the lightly-weighted bisecting of 0=σ and τσ = . This
tends to suggest that the value might have been derived at by bisecting to a desired tolerance, but
without further information about the original development, seemingly, only speculation remains
as to explain the unique value—possibly derived at by a predefined limit for the allowable
maximum relative error, constrained by parameters based upon aspects of an application, or,
even from unusual starting points used in one of the various methods, such as bisecting.

